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Plasma motions in narrow capillary flow 
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(Received 21 March 1971) 

Plasma motions in the gaps between successive red cells in narrow-capillary 
blood flow are obtained in an idealized model, using a series of eigenfunctions to 
represent the disturbance to a basic Poiseuille flow created by the cells. The flow 
is matched, in the narrow entry and exit regions, to the lubrication flow in the 
constricted zone around the red cell (Fitz-Gerald 1969). Basically, the circulating 
toroidal motion predicted by Prothero & Burton (1961) is obtained in a reference 
frame in which the cells are considered stationary. Small secondary circulations 
are also found near the axis and close to the red cells, whose intensity is controlled 
by the amount of leakback past the cells. Zones of high shear are found along the 
capillary wall and in some cases on part of the red-cell face; implications of this 
for mass transport are discussed (see $4). Because of the unusual behaviour of 
the slowest-decaying dominant eigenfunction circulation and wall shear increase 
as the cell spacing decreases, contrary to  expectation, until the spacing becomes 
very small indeed. 

1. Introduction 
In previous papers (Fitz-Gerald 1969,1970) the author considered the problem 

of the mechanics of red blood cell (RBC) movement through narrow capillaries. 
Such vessels have diameters comparable with or smaller than that of the RBC, 
say in the range 3.0 to 8.0pm (RBC diameter about 8 ,urn)?; the cells are therefore 
compelled to travel in single file, with successive cells separated by what Prothero 
& Burton (1961) termed a ‘bolus’ of plasma. The flexible RBC’s are deformed 
sufficiently to clear the vessel walls, partly by large-scale pressure forces and 
viscous drag and partly by local pressure increases in the thin elastohydro- 
dynamic lubrication film around the constriction zone. The importance of this 
lubrication process was fist emphasized by Lighthill (1968,1969), who pointed 
out that under negative clearance conditions a t  least, where cell deformation by 
lubrication pressure was essential for movement to occur, the resistance to flow 
of the cell-plasma train would largely be provided by the cells. Furthermore, the 
exchange of nutrients and metabolites, particularly gases, between tissue and 
blood would be greatly facilitated in the thin high-shear lubrication zone. 

While this is certainly the case in the narrowest capillaries, and in larger ones 
at low RBC velocity, significant contributions to the resistance, or apparent 
viscosity, may well be made by plasma in the bolus flow. The amount of plasma 

t For references to data concerning diameters, RBC velocities, etc. see, for example, 
Fitz-Gerald (1972). 
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leaking back past the RBC is small compared with the total flow so that most of 
the fluid in the bolus must perform a circulating motion, relative to the red cells, 
t o  ensure that the mean plasma velocity be almost equal to the cell velocity. 
Such a flow may convectively assist the mass transport of slowly diffusing 
nutrients stored in the plasma, such as fats and proteins. 

Previous attempts, both analytic and numerical, to model the bolus flow 
(Bugliarello & Hsiao 1970; Aroesty & Gross 1970; Bloor 1968; Lee & Fung 1969, 
1970) differ significantly amongst themselves; further, very crude boundary 
conditions were employed. The RBC was assumed in all cases to be a rigid 
cylinder, either completely occluding the capillary or allowing a simple Couette 
flow around the wall. In  the lubricated flexible red-cell analysis the velocity 
profiles and fluid leakback were markedly affected by both capillary diameter 
and RBC velocity; accordingly, it seemed advisable to reconsider the bolus flow 
problem, to examine the effect of the lubrication flow on the motions in the bolus. 

Reynolds numbers for typical capillary flow are very low; mean velocities are 
of the order of some hundreds of microns/sec, diameters a few microns and plasma 
kinetic viscosity about two centipoise, giving Re in the range 10-2 to The 
detailed geometry of the bolus will therefore probably not greatly affect the flow. 
Wang & Skalak (1969) found streamline patterns for a line of spheres in a fluid- 
filled tube which were very similar to those obtained in calculations using plane- 
ended red cells. Plane-faced cells will also be assumed in the present analysis. 
These are obtained by truncating the prolate ellipsoids used by Fitz-Gerald 
(1969) in the lubrication analysis, and the position of the truncation plane is 
chosen to give a comparatively narrow entry and exit to the bolus, but also to 
ensure negligible interference with the mechanics of the lubrication flow. This 
model of the bolus, together with the approximate flow pattern expected, is 
shown in figure 1. 

It should be emphasized that this is a gross simplification of the actual plasma 
bolus geometry and is chosen to facilitate analysis. In wiwo and model experi- 
ments by Bloch (1962), Briinemark & Lindstrom (1963)) Guest, Bond, Cooper & 
Derrick (1963)) Palmer (1959) and Lee & Fung (1970) have shown that the red 
cell assumes a variety of shapes in capillaries, depending on capillary size and 
cell velocity. ‘Parachute ’, ‘crepe-suzette ’ and buckled modes are possible; one 
feature they have in common is a tendency to an inwards buckling at the trailing 
edge, presenting a concave surface to the bolus. Fine flow details obtained from 
the present plane-surfaced truncated ellipsoid model may therefore be inapplic- 
able t o  actual capillary motion. However, the effects of the leakback from the 
lubrication zone will still be present regardless of the shape of the red-cell 
surface; this will be discussed later. In  certain unusual blood diseases, haemolytic 
anaemia and spherocytosis, the geometry used here may be quantitatively quite 
accurate, but these conditions are comparatively rare. 

In  the following analysis the ellipsoid is truncated at  a point halfway along the 
semi-major axis. The RBC radius rc is then 0*866a, where a is the capillary radius, 
so the requirement of a narrow entry to the bolus is satisfied. Examination of 
the lubrication solution shows that nearly all the pressure variation and viscous 
resistance effects occur inside this limit. Small variations of the position of this 
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truncation point do not significantly affect the velocity profile there, since the 
lubrication region is well inside this point; neither is the geometry of the bolus 
greatly altered, since the radius of the red cell is changing only slowly with z 
there. If h is the lubrication film thickness at  the end point (here 0-134a) then 
the axial velocity profile in the film (Fitz-Gerald 1969) is 

(1.2) 
a& - U [ (Sr, + h)2 - (2rc h + h2)/1n ( 1 + h/ rc ) ]  

[ (2rch + h2)/16p] [2rE + 2r,h - (2r,h + h2)/ln (1 + h / r c ) ] .  
where - drp - - 

dz 

Here U is the RBC velocity and 2naQ the leakback past the cell. These results 
were obtained in a cylindrical co-ordinate system ( r ,  z )  in which the red cells were 
stationary and the walls moved backwards with velocity - U ;  the same reference 
frame will be used throughout the present discussion but with the origin re- 
defined to lie at the mid-point of the centre-line of the bolus. 

U 

FIGURE 1. Co-ordinate system and dimensions. 

The no-slip requirement continues the axial velocity boundary condition on 
the capillary wall r = a and u must also be zero at the (solid) cell face 0 6 r < r,. 
The radial velocity will also be taken to be zero on the boundaries; this is clearly 
true at the capillary wall and red-cell surface, and agrees in the entry gap with 
a similar assumption made for the lubrication theory. If desired, an approximate 
radial velocity in the gap could be computed from the continuity equation but 
this would not satisfy the Navier-Stokes equations. In  any case the radial 
velocities there will be small, and will be ignored in this analysis. 

In  the next section an analytic solution of this problem is presented in the 
form of a truncated series of eigenfunctions superimposed on the basic Poiseuille 
stream function. Results are shown in $4 for several values of the various 
parameters involved and these are discussed with reference to the mass transport 
and capillary resistance problems. A n  exponentially decaying 2-dependence is 
sought for the disturbance functions since it is of interest to discuss the ‘zone of 
influence’ of each cell on the plasma flow, in relation to the bolus dimensions. 
This gives more direct information than the sinusoidal dependence used by Lee & 
Fung (1969) for their similar problem. The coefficients of the series are obtained 
using a least-squares technique for minimizing the error in matching the 
boundary conditions; such an approach seems preferable to the more naive 
collocation matching used by Lee & Fung and by Zidan (1969) in his solution 

F L M  51 30 



466 J .  M .  Fitz-Gerald 

(using similar eigenfunctions) for the slow extrusion of a jet of fluid from a 
nozzle in the spin process for the manufacture of artificial fibres. 

An important feature of the flows obtained is the presence of a region of 
relatively high shear extending along the entire length of the capillary wall, the 
effect being virtually independent of cell spacing and lubrication film thickness. 
Interesting also is the intrusion of part of the circulating bolus flow into the 
entry and exit regions of the lubrication zone, and the continuation, in some 
cases, of a zone of relatively high shear for some distance up the red-cell face. 
An unexpected but comparatively unimportant feature is the presence of small 
slowly moving secondary circulation cells near the axis at  the RBC face. 

2. General solution for bolus flow 
Consider the problem of slow viscous flow of an incompressible fluid, in the 

absence of body forces, in a circular cylinder of radius a and length 21 using 
axisymmetric cylindrical co-ordinates ( r ,  z )  with the origin at  the mid-point of 
the centre-line. Introduce a Stokes stream function $, defined by 

a@ v, $ ( O , x )  = 0, 1 a$ 
r ar - - )  - r z =  

where u, v are the axial and radial components of the velocity u. In terms of $ 
the equation of motion reduces to 

Since the cylinder is moving backwards, with velocity - U ,  the boundary 
conditions at the walls are 

a $ p  = -aU at r = a, 
$(a,z) = a& if $(O,z )  = 0, 

where & is the leakback, assumed known from the lubrication analysis discussed 
earlier. 

At the end of the cylinder general boundary conditions will be allowed, viz. 

1 (2.3) 

( 2 . 4 ~ )  

Clearly u(r, f 1) = f ( r ) ,  W(T, f 1) = & g(r) and the second condition may be 
replaced by 

(2.4 b )  

The only restriction here is that the flow is symmetric about the cross-section 
z = 0. This is prompted by the intended application to capillary flow; anti- 
symmetric solutions may, of course, be included in an exactly analogous 
manner, but with a considerable increase in algebraic and computational 
complexity. 

$(r, 5 1) = pu(p, $_ 1)dp = -W), say. s,' 
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It is convenient to work in non-dimensional terms and new variables are 
defined as follows. 

z* = zla, r* = rla, $* = @I( Uaz), u* = u / U ,  f * =flu, 
g* = glU, F* = F/(a2U), G* = GlaU. 

Since no confusion can occur the asterisks are omitted for convenience. Equation 
(2.2) is unchanged and the boundary conditions are now 

(2.5) a$/& = - 1 ,  @ =  &C on r = 1, 1 
a$laz = +rg(r ) ,  @ = F(r )  on z = * E , (  

where C = 2QlUa and E = 11.. The parameter C was selected t o  conform with 
the notation of the lubrication theory. 

Because of the non-homogeneous radial boundary conditions (2.5) the system 
in this form is not Sturm-Liouville. Fortunately, the system can be transformed 
to  one of the Sturm-Liouville type by the change of dependent variable 
$ = @p + $,, where $p is the (2-independent) Poiseuille solution 

@ p  = (&+c)r2 -&(1+c)r4  

satisfying (2.2) and the boundary conditions (2.5), and $, is an additional 
solution, also satisfying (2.2) and homogeneous boundary conditions 

$-, = a@,jar = 0 on r = 1. (2.6) 

$, is selected to match the boundary conditions on the RBC face and lubrication 

(2.7a, b )  

The perturbing solution 9, may conveniently be obtained &s a series of separ- 
ated eigensolutions of (2.2), which may be written as 

Explicitly this is 32 \ 34 

L2@+2 (L: '- J 

Separated solutions may be obtained by requiring that either 

or 

(2.9) 

(2.10) 

Real values of the separation constant a or /? are selected to give solutions with 
exponential decay, away from the site of disturbance, to the basic Poiseuille 
flow. This gives more direct information on the degree of interference of disturb- 
ances from successive red cells, as the bolus length varies, than does the sinusoidal 
z-dependence chosen by Lee & Fung (1969, 1970). Equation (2.9) gives rise to a 
solution of (2.8) of the form 

A e*azr2J,,(ar) +Be*@rJ,(ar), (2.11) 

while (2.10) gives solutions 
( A  +Bz) e*~zrJ,(/3r). (2.12) 

30-2 
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Clearly solutions of the form (2.12) cannot satisfy both of the conditions of 
(2.6) and will thus be ignored. Application to (2.11) of the boundary conditions 
(2.6), which are satisfied by each separated solution separately, gives simul- 
taneous linear equations for A and B, 

(2.13) 

which have non-trivial solutions only if 

a[Ji(a) + J:(a)] = 2J,(a)J,(a). (2.14) 

Solutions of (2.14) form a set (a,) of discrete eigenvalues for the separation 
constant a. They are all complex and those of large modulus (large n) may be 
shown t o  have the asymptotic form a, N i (2n  + l )n  k i In (4% + 2)n.  The f i s t  few 
eigenvalues are given in table 1. Scarton (1970) has shown in a study of periodic 
compressible viscous flow in a tube that two bands of eigenvalues exist. In  the 
limit of zero frequency these reduce to the complex conjugate pairs obtained 
here. The eigenvalue a, = 0 is degenerate and bifurcates for non-zero frequency 
(Scarton 1970; Scarton & Rouleau 1971a, b) .  In  the present case the correspond- 
ing eigensolution satisfying $ = 0 on the wall is the Poiseuille one A(r2-r4) ,  
which can only satisfy the zero velocity condition on the wall if A = 0. This 
solution will therefore be ignored in the present analysis. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
4.466299 
7.694104 

10.874574 
14.038891 
17.195565 
20.347968 
23,497724 
26.645717 
29.792475 
32.938331 

TABLE 1 

0 
1.467470 
1.726971 
1.894943 
2.020063 
2.119946 
2.203124 
2.274406 
2.336779 
2.392226 
2-442135 

Corresponding eigensolutions even in x are of the form 

(2.15) 

(ignoring the singular Bessel functions of the second kind), where 

En = Jo(an)iJl(atJ 
and xn is defined so that at  z = 

Xn(r, +€) = $n(r) = r2JO(a,r)-XnrJl(a,r). (2.16) 

The differential equation and boundary conditions are real, hence $a must be 
real. Further, since the eigensolutions occur in conjugate pairs x,, X n  (where xn 
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corresponds to the nth eigenvalue in the first quadrant) $a may be written 
as 

$a = 42 (BnXn+BnXn) 
1 

m 

1 
= RexBnXn. 

At z = 6 this may be written 

(2.17) 

m m 
R R  

1 1 
(2.18) 

where $n = $: i- i+A and Bn = B,R + iBi. It seems plausible, although difficult 
to prove, that both ($,R} and {$:I constitute complete sets over the function 
space satisfying (2.6). All relevant eigenvalues have been obtained, so that no 
other eigensolution, having a different x-dependence, is possible. 

The radial velocity at  z = e corresponding to any eigenfunction is given by 

$a(r, e) = 2 Bn $n - 11 Bi $L 

Writing an tanh (ea,) = 
(2.18) is obtained from 

an+ ib,, the radial velocity at x = e for the solution 

CBz(an$E-bn $i) - 2 Bi(a, $i + bn 9:). (2.19) 

Truncations of the series (2.17) or (2.18) are now used to match the prescribed 
functions in (2.7). A simultaneous least-square error fit is obtained. Define 4 to 
be the integral 

n N 

1 1 
+ { ~ ( r )  - z BE(an+z-bn + x BI, (an$: +bn+e) )8]  dr, 

where N is the number of terms in the truncated series and w ( r )  is a convenient 
weighting function, then {B,R), {Bi} may be obtained as solutions of the 2 3  
equations a9/8Bi = 0 

which are derived explicitly in appendix A. 

mitable weighting function. This makes the integrals 

(2.20) 

Examination of the form of the eigenfunctions suggests that w ( r )  = r-l is a 

iV/aB,R = 0, (n = 1, ..., N ) ,  

decrease rapidly as (n - m) increases from zero, giving a matrix for the equations 
which is strongly diagonally dominated (i.e. well-conditioned). This is of 
importance when error propagation in the numerical solution of (2.19) is being 
considered. An outline of the argument used to arrive at  this form for w ( r )  is 
given in appendix C. 

For the plasma flow described in 8 1 the functions $'(r), g(r) take special forms 
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obtained from (1.1) and (1.2), in appropriate non-dimensional variables. 
Numerical details of the procedure are given in appendix B. It should be noted 
that although this solution was developed primarily to  examine the case of flow 
in narrow capillaries, eigenfunctions expansions similar to  those developed here 
may be used to solve problems such as viscous entry flow in a pipe at  Reynolds 
number < 1 and the flow of gases in a simplified model of the terminal bron- 
chioles and alveolar ducts of the lung (Davidson & Fitz-Gerald 1972). 

3. Results 
Before discussing particular solutions of the plasma flow problem it  is of 

interest to examine the properties of the eigenfunctions. Streamlines for the real 
and imaginary parts of x1 and xz are shown in figures 2(a)-(d) for E = 1. As 
expected, the functions tend to decrease from z = e to z = 0, the rate of decay 
increasing as the order of the eigenfunction increases. However, for a given r the 
functions need not exhibit monotone decay and local increases may occur. I n  the 
case ofx? this effect is so marked that the maximum value of the function occurs 
off the line z = E .  The behaviour of xf“ as E decreases is illustrated in figures 
2(e ) - (h ) ;  similar plots for x: are given for comparison. The maximum value 
achieved by xf” actually increases as E decreases and for E = 0.2 this maximum 
occurs at x = 0. Over most of the region, therefore, xp increases markedly, rather 
than decreasing from x = E to z = 0. This somewhat unexpected feature of the 
first eigenfunction has important consequences for the flow patterns in inter- 
erythrocyte plasma spaces. 

Figure 3 shows streamlines for flow corresponding to a fairly small value of the 
leakback parameter, C = 0.025, and three values of e ;  this value of C corresponds 
to a comparatively close-fitting high-resistance red-cell fit. There are several 
noteworthy features. First, there is a region of high shear near the capillary wall, 
extending the length of the plasma bolus, and continuing into the lubrication 
zone. This region is comparatively unaffected by variations in E ;  similar calcula- 
tions with C = 0.05 show that leakback (related closely to film thickness) in the 
lubrication zone also has little influence on the high-shear wall region. 

There is, in some cases, a second high-shear region on the outer parts of the 
red-cell face. Unlike that on the capillary wall, this is very dependent on e, 
increasing in intensity as E decreases. The maximum value taken by the stream 
function also increases as E decreases. This is due to  the anomalous behaviour of 
the real part of the first eigenfunction, which is the dominant member of the series, 
particularly for small E .  Ultimately, of course, as E becomes very small and the 
eigenfunctions vary little in the region of the flow, the shear and stream function 
values decrease again and tend to  zero with E (except near the capillary wall). 

The unexpected form of the streamlines for E = 1.0, with a ‘necking’ of the 
main circulation and a secondary circulation near the middle of the red-cell face, 
seems to be dependent on the amount of leakback through the lubrication zone. 
Figure 4 shows streamlines for E = 1.0, c = 0.05; here there is much less disturb- 
ance from the simple toroidal circulation found by Aroesty & Gross (1970), 
Bugliarello & Hsaio (1970) and Bloor (1968)for the fixed-leakbackrigid-cell model. 
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As mentioned earlier, it is possible that variations of bolusgeometrymay influence 
details of the flow. However, in this case it appears that the secondary circulation 
is mainly a function of the type of lubrication flow experienced by the red cell, in 
particular of the gap thickness parameter G. For completeness a schematic 

r=O 
z =  2 1 i = O  

As mentioned earlier, it is possible that variations of bolusgeometrymay influence 
details of the flow. However, in this case it appears that the secondary circulation 
is mainly a function of the type of lubrication flow experienced by the red cell, in 
particular of the gap thickness parameter G. For completeness a schematic 

z= 2 1 i = O  

I 

0.01 

t 

0.15 

~ 
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diagram of the streamline patterns around the entry to the lubrication zone is 
shown in figure 5 and in figure 6 streamlines for the flows of figure 3 are plotted 
in a co-ordinate system fixed relative to the capillary, rather than the red cells. 

A final remark concerns the dependence of the pressure drop in the plasma 
bolus on E .  Lee & Fung (1970)) Bugliarello & Hsaio (1970) and Bloor (1968) all 
find that the pressure gradient in the plasma bolus increases as E decreases and 
does so rapidly for c less than about 0.5; similar experimental findings were 

Axis 

Capillary wall -0 0125 

(4 (b) 

FIGURE 3. Streamlines for the bolus flow, C = 0.025, 
for (a), (b ) ,  (c) respectively. 

€ =  1.0, 

r 

FIGURE 4. Streamlines for bolus flow, C = 0.05, E = 1.0, 

reported by Prothero & Burton (1962). These results are confirmed by the 
increase in shear rates as E decreases found in this analysis. However, the impor- 
tant quantity, as far as the resistance to motion in the plasma spaces is concerned, 
is the total pressure drop over the length of capillary occupied by plasma and 
how this depends on cell-spacing variations. Numerical difficulties in evaluating 
derivatives of the series solutions used here unfortunately prevent relevant 
information being obtained; the derived series did not, in fact, converge. More 
work on this problem seems to be indicated to resolve the conflict of other 
solutions mentioned above. 
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Cnplllary wall 

FIGURE 5. Schematic view of streamlines around the antrance to the lubrication region. 

0 1  

0 2  

n z  

0 4875 

(4 (h)  (4 

FIGURE 6. Bolus flow streamlines in co-ordinate system fixed relative to the capillary, 
C = 0.025, B = 1.0, 0.5, 0.2 for (a) ,  ( b ) ,  ( c )  respectively. 

4. Implications for mass transport 
The relevance of these flow patterns to mass transport depends on the PBclet 

number for any particular molecular species. In  narrow capillaries typical 
velocities are of order 100-1000pm/sec and diameters are 3-8pm. The kinematic 
diffusivity for oxygen in plasma may be estimated to be 1.5 x cm2/sec 
(Landis & Pappenheimer 1963). For oxygen, therefore, PBclet numbers are of 
order unity (0.35 < Pe < 7 for the values given) and convection might be expec- 
ted to be at  least as important as diffusion for mass transfer. Numerical studies 
by Aroesty & Gross (1970), however, show that convective effects are negligible 
for Pe less than about 10 but it should be noted that these calculations were for 
a completely occluded capillary. Plasma emerging from the thin lubrication zone 
will be well supplied with oxygen since a large proportion of transfer will occur 
across the constricted region where diffusion paths are shortest. This oxygen- 
charged plasma will continue to supply oxygen to the surrounding tissue in the 
high-shear zone of the bolus near the capillary wall. There may be additional 
enhancement of transfer due to the high-shear regions on the red-cell face. 

PBclet numbers for proteins such as albumin lie in the range 10-100; convection 
will therefore be of considerable importance in controlling the supply to tissue 
of such a high molecular weight and slowly diffusing species. Moreover, the 
available protein contained in blood is stored principally in the plasma, rather 
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than the cell so rotation of the inner bolus, bringing large proportions of plasma 
adjacent to the high shear layer on the capillary wall, will ensure that diffusion 
path lengths for protein are minimized. In  this context it is interesting to note 
that recent theories (discussed, e.g. by Luft, 1966) of mechanisms of transport 
of lipid-insoluble molecules such as protein across the endothelium (wall) 
consider that movement can only occur through narrow ‘gaps’ at the junctions 
of endothelial cells. These gaps, approximately 100 d wide, are estimated to 
occupy only 0.1 yo of the total endothelial area. The necessity for the concentra- 
tion of diffusion paths at  these widely-spaced exit points underlines still further 
the importance of convection for assisting the transfer of slowly diffusing 
nutrients and metabolites to and from the tissues. 

It is again the author’s pleasure to acknowledge the encouragement and assis- 
tance of ProfessorM. J. Lighthill during the preparation of this work. The financial 
assistance of a Gowrie Travelling Scholarship is gratefully acknowledged. 

Appendix A 
Introduce the notation cf) = / : i $ ~ $ p c ~ r ,  

( II i.) = J;;$:$:dr, 

F; = Jliyl$:dr, 

Gf = f : G $ i d r .  

(y)  = / o l ~ $ P ~ ~ d r ,  

FF = /:iFl$Fdr, 

1 1  
GF = So G$Fdr, 

Equations (2 .20)  may then be represented explicitly in matrix form as 

S . X  = D, 

$’? + a, GE - b, GA (n = 1 , .  . ., N ) ,  
where D, = { 
and 

F A _ N + a n - N G , I _ N - b b n - N G ~ - N  (n = N +  1 , .  . ., 2N) ,  

RR RI RI II 
Sij = ( l+a ia j )  ( ij) -ajbi ($) -a&* ( i.) +bibj (J 

-Si+N,f+N= b i b j (  RR i j ) + a i b j ( j i ) + a j b i (  RI RI +j)+(l+aiaj)(i.)> II 

- Si, j+N = ai bj ( RR ij) - b i b j i j i )  RI + ( l + a i a j ) (  RI i j ) - a j b i ( i . ) ,  

SifN,i = aj  bi (-r) + (1 + .,aj)( ji) -bib, ( ij) - aibj ( ij) , RR RI RI II 

for i = 1 , .  . ., N ,  j = 1 , .  . ., N .  The solutions B f ,  Bi are related to the solutions 

x, by BZ = X ,  
BL = X,+N 

(n = 1, . . ., N ) ,  
(n = 1,  . . ., N ) .  
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Appendix B 
Using the University of London CDC 6600 computer, with single precision 

accuracy to 14 significant figures, the eigenvalues a, were obtained to 12 signifi- 
cant figures. Also the resulting eigenfunctions +,, computed with a complex 
Bessel function routine accurate to 13 significant figures in the sector of interest, 
satisfied the boundary conditions (2.6) to 12 significant figures. The number of 
operations required to compute the integral coefficients defined in appendix A 
(using a 10-point Gaussian quadrature with successive halving of the interval) 
to 10-figure accuracy was of order 103; accuracy to at  least 9 significant figures 
may then be expected for the matrix entries, and right-hand side vector, in the 
set of equations (2.20). Round-off errors here would lead to an error in the 11th 
place at worst and may be ignored. 

Equations (2.20) were solved using Gaussian elimination with scaling, partial 
pivoting and iterative improvement of the initial results. For values ofe greater 
than about 0.001, precision to at  least 12 significant figures were obtained in the 
initial (unimproved) solution. The condition of the matrix was therefore approxi- 
mately of the order of lo2, so that relative errors of 10-9 in the matrix entries and 
right-hand sides would lead to relative errors in the solution of order lO-'at most. 
These are negligible compared with errors introduced by truncation of the series. 

Sixty terms were used and, as might be expected, the condition that the radial 
velocity be zero at  x = e was satisfied to good accuracy, because of the absence of 
discontinuities of any kind in the function G(r ) .  On the other hand, the stream 
function boundary condition P(r)  has a discontinuity in the second derivative 
at  the edge of the red-cell face. It might therefore be anticipated that convergence 
of the series expansion would be slow and that considerable errors would occur 
in matching the function .F(r) .  However, calculations showed that the coefficients 
of the dominant slowly decaying terms were obtained with excellent accuracy 
and were stable to variations in the level of trunction. Any errors in matching the 
boundary condition, therefore, decay extremely rapidly with decreasing z .  

Appendix C 
The equation for $k can be written in the form 

where 

Taking the real part of (C l), we obtain 
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we integrate to obtain, using the notation of appendix A, 

1 1  

o r  
+ r m ( a i )  ( ~ ) - r r n ( a % )  (:A) +j -(Tz$E-Yz$E)~~* (C 2) 

The first term on the right-hand side vanishes because of the boundary conditions 
satisfied by $n) $.,. As n, m, In-ml become sufficiently large, Re (a;) N n2, 
.Irn(&) N nlnn and (C 2) becomes approximately 

This integral can similarly be reduced; two applications of the above procedure 
show that A RR 

(nm) (nm)+ (n + m) (n2 - m2)2* 

Thus as n, m, In-ml increase, the matrix entries of the form 

decrease rapidly to zero, as desired. Similar rationales may be devised for the 
other entries, with the same results. 
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